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Simple Summary: In this study, we explored how two different dietary supplemental strategies can
help red hybrid tilapia (Oreochromis spp.) combat infections caused by Tilapia lake virus (TiLV) and
Aeromonas hydrophila. We found that these feed supplements boost fish’s immune system and improve
their survival against these pathogens. Notably, strategy B was particularly effective, leading to
lower mortality compared to those on a regular diet. Our results suggest that these dietary strategies
could provide valuable support for tilapia farmers, allowing them to protect their fish from harmful
diseases and ensure healthier stocks.

Abstract: Coinfections by multiple pathogens, including viruses and bacteria, have severely impacted
tilapia aquaculture globally. This study evaluated the impacts of dietary supplementation on red
hybrid tilapia (Oreochromis spp.) coinfected with Tilapia lake virus (TiLV) and Aeromonas hydrophila.
Fish were divided into three groups: a control group on a normal diet, and two experimental
groups received diets supplemented with strategy A, an organic acid blend combined with a lyso-
phospholipid-based digestive enhancer, and strategy B, an organic acid blend combined with natural
immunostimulants and nutrients. Following exposure to both pathogens, the fish supplemented
with strategies A and B showed lower cumulative mortality rates of 50.0% and 41.7%, respectively,
compared to 76.3% in the control group. Notably, fish fed with strategy B-supplemented diet
displayed a stronger immune response, with a lower expression of il-8, mx, and rsad2, and showed
less pathological changes in the liver, spleen, and intestines, suggesting enhanced resistance to
coinfection. In contrast, fish receiving strategy A did not exhibit significant changes in the immune-
related gene expression or pathogen load, but demonstrate less pathological alterations, indicating
intestinal protection. These findings highlight the potential of feed additives, particularly strategy B,
to reduce the impact of virus-bacterial coinfections and improve outcomes in tilapia farming.

Keywords: feed additives; TiLV; Aeromonas hydrophila; coinfection; aquaculture

1. Introduction

Tilapia (Oreochromis spp.) is an important source of dietary protein and contributes to
food security worldwide. However, the sustainability of tilapia aquaculture is under threat
due to the rise in infectious diseases caused by viruses, bacteria, and parasites [1]. Notably,
coinfections, which involve simultaneous or sequential attacks by multiple pathogens,
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pose challenges to the development of treatments and the identification of the primary
pathogen response to reduce fish morbidity and mortality [1–3]. Various examples of coin-
fections reported in tilapia include Tilapia lake virus (TiLV), Tilapia parvovirus, Aeromonas
spp., infectious spleen and kidney necrosis virus and Streptococcus agalactiae, and infec-
tions by iridoviruses, Flavobacterium columnare, and A. veronii [3–6]. These coinfections
can synergistically make fish more susceptible to other pathogens, worsen clinical signs,
increase mortality rates and consequently lead to significant economic losses in tilapia
aquaculture [2].

TiLV and Aeromonas have emerged as significant causes of tilapia mortality in recent
years. These pathogens are frequently found coinfecting tilapia in field conditions [3,5,7]
and have been shown to cause severe infections [5]. Specifically, a study reported a 70%
mortality in red tilapia (Oreochromis sp.) due to coinfection with TiLV and bacteria. In
the affected fish, Aeromonas hydrophila was detected in 100% of cases, while S. agalactiae
was found in 50% of the affected fish [5]. Moreover, the coinfected fish showed higher
mortality rates compared to those infected with either pathogen alone. These findings
emphasise the importance of addressing coinfections in TiLV outbreaks and highlight
the need for comprehensive strategies to mitigate their impact. To minimise mortality
caused by coinfections, strategies such as vaccinations, antibiotics and the application of
bacteriophages may be implemented at fish farms [8,9]. Feed additives and probiotics have
also gained attention for their capacity to reduce mortality and promote the health of fish.
In tilapia, feed additives, such as phytogenic essential oils, acidifiers, organic acids, algae,
and cyanobacteria, have shown promise in reducing mortality associated with A. hydrophila
infections [10,11]. Similarly, the use of Bacillus spp. probiotics and feed additives containing
Saccharomyces cerevisiae has been studied and shown to provide some protection against a
single infection by TiLV or A. hydrophila through enhanced immune function in red hybrid
tilapia [11]. However, the potential use of these feed additives against coinfections in tilapia
has not been reported to date. In this study, we evaluated the efficacy of commercially
available feed additives in reducing the impact of coinfection with TiLV and A. hydrophila
in red hybrid tilapia by examining the cumulative mortality and immune responses. Our
findings could provide valuable information for preventive strategies that will help manage
these coinfections.

2. Materials and Methods
2.1. Experimental Fish

A total of 530 red hybrid tilapia with an average body weight of 7.0 ± 0.5 g were
obtained from a hatchery in Petchaburi province and subsequently housed at the animal
research facility of the Faculty of Veterinary Medicine, Kasetsart University, Bangkok
province, Thailand. Upon arrival, the fish underwent a two-week acclimation period in
a 400 L tank, and the water quality parameters were maintained as follows: dissolved
oxygen (DO) at 5.68 ± 0.32 mg/L, ammonia (NH3) at 0.18 ± 0.05 mg/L, nitrite (NO2

−)
at 0.10 ± 0.05 mg/L, and pH at 7.20 ± 0.35. The water temperature was controlled at
28 ◦C ± 1 ◦C with a photoperiod of 12 h of light and 12 h of darkness. The fish were fed
twice daily with commercial feed at a rate of 3% of total body weight, and their behaviour
was observed daily for any abnormalities. Ten fish were randomly selected for screening
for external parasites and bacterial and TiLV infection. All the procedures in the study
were approved by the Kasetsart University Animal Use Committee (protocol number
ACKU63-VET-011).

2.2. Preparation of Virus and Bacteria for the Challenge Study

The TiLV strain VETKU-TV08, which was isolated from moribund red hybrid tilapia
in Ang Thong province, Thailand in 2019, was propagated in E-11 cells, which are clones of
the SSN-1 cell line obtained from the European Collection of Authenticated Cell Cultures.
The E-11 cells were cultured in Leibovitz’s L-15 medium supplemented with 5% foetal
bovine serum and cultured at 25 ◦C until 80–90% confluence was reached. The infected
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cells were then passed into the confluent E-11 cells, and the subsequent cytopathic effect
(CPE) was observed daily. Between 5 and 7 days post-virus inoculation, when an 80% CPE
was visible, the viruses were harvested from the E-11 cells by centrifugation at 3000× g
for 10 min at 4 ◦C. The supernatant containing the harvested viruses was stored at −80 ◦C
until the challenge experiment. The TiLV titre (TCID50/mL) was determined by following
the standard serial dilution protocol [12].

The bacterial challenge study was prepared from a suspension of the A. hydrophila
isolates, KU-AH62. Briefly, the bacterial isolates were streaked onto Tryptic soy agar (TSA)
(Difco™, Sparks, MD, USA) and incubated overnight at 30 ◦C. The next day, a full loop
of A. hydrophila colonies was transferred to Tryptic soy broth (Difco™, Franklin Lakes, NJ,
USA) and incubated overnight at 30 ◦C in an incubator shaker at 225 rpm. The bacterial
concentration was determined using a standard plate count technique [13]. The bacterial
suspension was then centrifuged at 3000× g, and the supernatant was discarded. The pellet
was resuspended in a 0.85% NaCl solution and diluted to achieve a final concentration of
108 CFU/mL.

2.3. Diet, Feed Additives and Experimental Design

A schematic of the experimental design of the study is presented in Figure 1. A total
of 480 red hybrid tilapia were divided equally into three groups, with 40 fish per tank
(150 L) in four replicates. Group 1 comprised positive control fish that received a standard
diet, while the fish in Groups 2 and 3 were supplemented with additives using strategy A,
0.3% w/w of organic acid blend (Bacti-Nil® Aqua Adisseo, Antony, France) combined with
0.1% w/w of a lyso-phospholipid-based digestive enhancer (Aqualyso®, Adisseo, Antony,
France) and strategy B, a 0.3% w/w of organic acids blend combined with 0.1% w/w of a
blend of natural immunostimulants and nutrients (Aquastim®, Adisseo, Antony, France),
respectively. The feed used in this study contained 32.9% protein and other components
(Supplementary Table S1), with each feed additive (Strategy A and B) incorporated prior to
the pelleting process.
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Figure 1. Experimental design of the study. The fish were fed a control diet only or feed supplemented
with additives using strategy A or B for 21 days. Groups 1 to 3 had four replicates and one tank
dedicated as the control tank (sham) group. Fish were injected intraperitoneally with TiLV at
105 TCID50/mL on day 0 and A. hydrophila at 108 CFU/mL on day 3.
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After 21 days of feeding with the respective diets, the fish from each group were first
challenged with 50 µL of TiLV at 105 TCID50/mL intraperitoneally at 0 days post-infection
(dpi) and subsequently with 100 µL of A. hydrophila at 108 CFU/mL intraperitoneally at
3 dpi. Additionally, a negative (sham) control (n = 40) that received a control diet with
an intraperitoneal injection of the L-15 medium collected from uninfected E-11 cells and
0.85% NaCl was conducted in parallel. The fish were fed twice daily at a rate of 3% of
their total body weight. Tissue samples (liver, spleen, and anterior kidney) were collected
at 0, 3, 5, 7, and 14 dpi from five fish per group. Three tanks were dedicated to record
cumulative mortality, with an additional tank designated for sample collection. The samples
were processed for bacterial detection, viral quantification, immune gene expression, and
histopathological studies. The water quality parameters, including temperature, DO, NH3,
NO2

−, and pH, were examined daily. At 21 dpi, all the fish were euthanised using an
overdose of eugenol solution at a concentration of 30 mL/L.

2.4. Detection of A. hydrophila in Infected Fish

The anterior kidney samples from three fish (n = 3) in each treatment and control group
at each time point (0, 3, 5, 7, and 14 dpi) were collected to detect A. hydrophila. The samples
were individually streaked onto TSA plates (Difco™, Sparks, MD, USA) and incubated
overnight at 30 ◦C. Following incubation, the dominant uniform isolates were purified
through successive streaking on TSA plates.

The purified isolates were then subjected to DNA extraction using the GF-1 Bacterial
DNA Extraction Kit (Vivantis, Shah Alam, Selangor, Malaysia) according to the man-
ufacturer’s protocol. The polymerase chain reaction (PCR) amplification of the gyrase
B subunit (GyrB) gene specific for Aeromonas spp. was performed using a method de-
scribed elsewhere [14]. The PCR was performed in a 20 µL reaction volume containing
1 × Taq polymerase buffer, 2 µL of MgCl2 (25 mM), 0.2 mM of dNTP mix, 0.125 µM of
each primer, 0.25 µL of 5 U/µL Taq DNA polymerase, and 200 ng of DNA. The forward
and reverse primer sequences were IAF: 5′-CTGAACCAGAACAAGACCCCG-3′ and IAR:
5′-ATGTTGTTGGTGAAGCAGTA-3′. The PCR was performed in a T100 thermal cycler
(BioRad, Hercules, CA, USA) with the following cycle conditions: initial denaturation at
95 ◦C for 2 min, followed by 40 cycles of denaturation at 94 ◦C for 10 s, annealing at 55 ◦C
for 10 s, and an extension at 72 ◦C for 10 s. The PCR products were separated on 2% (w/v)
agarose gel electrophoresis and visualised using the ChemiDoc Imaging System (BioRad,
Hercules, CA, USA).

2.5. Total RNA Extraction and cDNA Synthesis

The total RNA was extracted from the liver, spleen, and anterior kidney tissues
collected at the designated experimental time points using Trizol® (Invitrogen, Carlsbad,
CA, USA) in line with the manufacturer’s instructions. The quality and quantity of the
extracted RNA were assessed using a NanoDrop™ Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Complementary DNA (cDNA) was synthesised from 1 µg
of total RNA using a ReverTra Ace® kit (Toyobo, Osaka, Japan) as per the manufacturer’s
instructions. The cDNA was diluted with diethylpyrocarbonate water and stored at −80 ◦C
for further analysis.

2.6. Quantitative PCR

The quantification of the TiLV genomic RNA in the liver, spleen, and anterior kidney
samples and the expression levels of the immune-related genes (il-8, ifn-γ, mx, and rsad2) in
the anterior kidney were analysed using a quantitative PCR (qPCR) assay in accordance
with the method described previously [15]. Each reaction contained 5 µL of iTaq™ universal
SYBR Green Supermix (BioRad, Hercules, CA, USA), 0.3 µM of both the forward and reverse
primers for each gene (Table 1), 100 ng of cDNA template, and molecular-grade distilled
water to adjust the total volume to 10 µL. The qPCR cycle condition consisted of an initial
phase at 95 ◦C for 3 min, followed by 40 cycles at 95 ◦C for 10 s and at 60 ◦C for 30 s using
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the CFX96™ thermocycler (BioRad, Hercules, CA, USA). All the samples were processed in
duplicate, and the average threshold cycle (Ct) values were retrieved to calculate the relative
expression values. The TiLV concentration was determined by extrapolating the obtained
quantification cycle on a standard curve derived from 10-fold serial dilutions of a plasmid
containing TiLV segment 3 [15]. The relative expression level for each immune-related
gene and viral concentration was determined by assessing the Ct differences between the
reference gene (β-actin) in each sample (∆Ct), followed by the baseline level of the fish
before infection (∆∆Ct) and employing the formula 2−∆∆Ct [16].

Table 1. Details of the primer pairs used for the quantitative polymerase chain reaction.

Gene Name Accession Number Primer Sequence 5′ → 3′ Length (bp) References

TiLV KU751816 F: CTGAGCTAAAGAGGCAATATGGATT 112 [15]
R: CGTGCGTACTCGTTCAGTATAAGTTCT

β-actin XM003443127 F: GTGGGTATGGGTCAGAAAGAC 111 [17]
R: GTCATCCCAGTTGGTCACAATA

il-8 NM001279704 F: TCGCCACCTGTGAAGGCA 116 [11]
R: GCAGTGGGAGTTGGGAAGAAT

ifn-γ NM001287402 F: GAAACTTCTGCAGGGATTGG 132 [18]
R: CTCTGGATCTTGATTTCGGG

mx XM003442686 F: ACCCTTGAGCTGGTGAATCA 174 [18]
R: ATCCTGAGTGAATGCGGTCA

rsad2 XM003453237 F: ATCAACTTCTCTGGCGGA 161 [11]
R: AGATAGACACCATATTTCTGGAAC

2.7. Histopathology

The internal organs (liver, spleen, and intestines) were collected from five fish from the
treatment and control groups at 0, 3, 5, 7, and 14 dpi. The tissue samples were fixed in 10%
neutral buffered formalin, embedded in paraffin wax, sectioned to a 4 µM thickness, and
stained with haematoxylin and eosin in line with the standard histopathological protocols.
The slides were scanned and visualised using the VS120® virtual microscopy slide scanning
system (Olympus, Tokyo, Japan) and evaluated with the Olympus OlyVIA 3.1 programme
(Olympus, Tokyo, Japan).

2.8. Statistical Analysis

The relative percent survival of both the control and treatment groups was determined
and analysed using Kaplan–Meier analysis followed by a log-rank (Mantel–Cox) test. The viral
concentrations and gene expression data from all samples were subjected to the Shapiro–Wilk
test, and all data followed a normal Gaussian distribution. The comparisons of daily mortality,
TiLV RNA, and gene levels between the additive and control diet groups at different time
points were assessed by two-way ANOVA, followed by Tukey’s test using Prism software 8
(GraphPad Prism, San Diego, CA, USA). The data were presented as the mean ± standard
deviation (S.D.). A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Influence of Additive Supplementation on Clinical Signs, Cumulative Mortality and
Pathological Changes

After being challenged with TiLV and A. hydrophila, all the fish showed clinical signs
of reduced appetite, lethargy, and atypical swimming behaviours between 3 and 15 dpi.
Indeed, the fish mortality started at 4 dpi and increased rapidly across all the groups,
with cumulative mortality ranging from 41.7% to 76.3% (Figure 2). Notably, the highest
cumulative mortality rate was observed in the control group. In contrast, the fish supple-
mented with either strategy A or B exhibited significantly lower mortality rates of 50.0%
and 41.7%, respectively (p < 0.05). The gross pathology examination revealed external
abnormalities, such as skin paleness and haemorrhages, abdominal swelling, fin erosion,
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and exophthalmos, in all the challenged fish. The internal pathological features included
the presence of a yellowish protein-rich ascitic fluid, a pale and yellow liver, an enlarged
spleen and anterior kidney, and oedematous intestines (Figure 3). No mortality or gross
pathology was observed in the sham control fish.
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lesions had ascitic fluid, and a pale, yellow liver and an enlarged spleen (inset) were evident.
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3.2. Effects of Feed Additives on the Replication of TiLV and A. hydrophila

We compared the levels of TiLV RNA in various organs, including the liver, spleen, and
anterior kidney, of the infected fish that received either a control diet or a diet supplemented
with additives using strategy A or B (Figure 4). Notably, TiLV RNA was detected in the inter-
nal organs of all the challenged fish at 3 dpi, with levels ranging from log 2.15 ± 2.00 to log
3.64 ± 1.15 copies/µg of total RNA in the liver; log 2.23 ± 1.56 to log 3.50 ± 2.19 copies/µg
of total RNA in the spleen; and log 2.81 ± 1.51 to log 3.89 ± 1.06 copies/µg of total RNA in
the anterior kidney. The viral load increased remarkably in all organs, with peaks evident
between 5 and 7 dpi and TiLV log concentrations ranging from log 4.30 ± 2.40 to log
6.08 ± 0.49 copies/µg of total RNA in the liver; log 4.66 ± 2.09 to log 6.38 ± 0.84 copies/µg
of total RNA in the spleen; and log 5.13 ± 0.85 to log 6.02 ± 0.55 copies/µg of total RNA
in the anterior kidney across all the groups. By 14 dpi, the viral load decreased in all the
infected fish and returned to levels similar to those observed in the early stage of infection
(Figure 4). Nevertheless, there were no statistically significant differences in the TiLV load
in the liver, spleen, and anterior kidney of the groups at any time point (p > 0.05). TiLV
was not detected in the fish at 0 dpi or in the sham-challenged group throughout the
studied period.
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Figure 4. The levels of Tilapia lake virus (TiLV) RNA in the (A) liver, (B) spleen, and (C) anterior
kidney of the fish fed the control diet or the feed supplemented with additives using strategy A or B
at 0, 3, 5, 7, and 14 days post-infection. The data from five fish are presented as the mean ± standard
deviation. Different alphabets indicate statistical differences (p < 0.05) between groups according to
Tukey’s multiple comparison tests.

Meanwhile, we conducted bacterial isolation and PCR to detect A. hydrophila infection
in the anterior kidney of the infected fish at 0, 3, 5, 7, and 14 dpi (Table 2). Our results
showed bacteria in all the infected fish at 5 and 7 dpi (Supplementary Figure S1). However,
no bacterial growth was detected in any of the groups at 0, 3, and 14 dpi. Additionally, there
were no statistically significant differences (p > 0.05) in A. hydrophila detection between
the infected control fish and those supplemented with additives using strategy A or B
throughout the sampling period.
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Table 2. Number of fish in which Aeromonas hydrophila was detected from the anterior kidney of the
fish challenged with Tilapia lake virus (TiLV) and A. hydrophila.

dpi † Positive Samples/Total Samples
Groups 0 3 5 7 14

Sham 0/3 0/3 0/3 0/3 0/3
Control diet 0/3 0/3 3/3 3/3 0/3
Strategy A 0/3 0/3 3/3 3/3 0/3
Strategy B 0/3 0/3 3/3 3/3 0/3

† dpi, days post-infection.

3.3. Impact of Feed Additives on the Expression of Immune-Related Genes

Alterations in the immune-related gene expression of the coinfected fish were assessed
by analysing the levels of the cytokines ifn-γ and il-8, and the antiviral genes mx and rsad2
in the anterior kidneys of the coinfected fish (Figure 5). Specifically, the expression levels of
ifn-γ were comparable across all the groups at 3 dpi, with the average relative expression
ranging from 0.37- to 1.1-fold (Figure 5A). At 5 dpi, the expression of ifn-γ in the fish
that were fed additive with strategy A increased markedly to 7.7 ± 5.5-fold, which was
significantly higher than that in the other groups (p < 0.05). However, the levels of ifn-γ
in these fish declined gradually and showed no significant differences across any of the
groups at 7 dpi (1.1- to 2.8-fold) and 14 dpi (0.23- to 0.56-fold).
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Figure 5. Expression of the (A) ifn-γ, (B) il-8, (C) mx, and (D) rsad2 genes from the anterior kidneys of
the challenged fish that were fed the control and additive-supplemented diets, strategies A and B. The
samples were collected at day 0 and 3, 5, 7 and 14 days post-infection following the Tilapia lake virus
and bacterial challenge (n = 5). The relative fold expression of genes at each time point following
infection was normalised to day 0 and is presented as the mean ± standard deviation. Significant
differences (p < 0.05) between groups from Tukey’s multiple comparison tests were denoted by
different letters.
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The expression levels of il-8 were remarkably altered in the fish that were fed the
control and strategy A additives (Figure 5B). By 3 dpi, the il-8 levels had increased 9.8 ± 3.3-
fold in the control group and 14 ± 4.2-fold in the strategy A group, and these increases
were significantly higher than those in the fish that were fed strategy B additives (p < 0.05).
While the il-8 levels remain unchanged at 5 dpi across all the groups, a significant reduction
was observed at 7 and 14 dpi. Notably, at 7 dpi, the fish that were fed with strategy A
showed il-8 levels of 4.8 ± 3.3-fold, which were significantly higher than those in the fish
that were fed other diets (p < 0.05). By 14 dpi, the levels of il-8 had decreased across all the
groups, with no significant differences between them.

Conversely, the expression of the antiviral genes mx and rsad2 showed minor changes
throughout the study period (Figure 5C,D). Specifically, at 3 dpi, the mx expression in the
fish that were supplemented with strategy B was 4.2 ± 1.9-fold, which was lower than
that in the control group (p < 0.05) (Figure 5C). Notably, the expression of both genes
remained relatively consistent across all groups at 5 dpi. By 7 dpi, the mx expression had
reduced significantly in all the groups, with the control group maintaining the highest
level at 1.9 ± 0.9-fold (Figure 5C). The level of mx in the fish that received strategy B was
0.19 ± 0.08-fold, which was significantly lower than that in the control group (p < 0.05).
Likewise, the rsad2 expression in the fish fed the control diet increased markedly to 4.2 ± 2.4-
fold at 7 dpi, which was significantly higher than in the supplement diet groups (p < 0.05)
(Figure 5D), while the fish that were fed strategy B additives showed the lowest expression
of rsad2 at 0.31 ± 0.26-fold at 7 dpi. By 14 dpi, the expression levels of both anti-viral genes
had decreased and were comparable across all the groups.

3.4. Histopathological Changes

We examined the histopathological changes in the internal organs, including the
liver, spleen, and intestines, of all the challenged fish at different time points (Figure 6,
Supplementary Figures S2 and S3). Specifically, the infected fish that were fed the control
diet exhibited remarkable histopathological alterations at 5 and 7 dpi. These changes
included syncytial cell formation, glycogen storage depletion, and the presence of intra-
cytoplasmic inclusion bodies in the liver; the severe depletion of red blood cells and the
distinct proliferation of melanomacrophage centres (MMCs) in the spleen; and lymphocytic
infiltration concurrent with widening of the lamina propria and the loosening of entero-
cytes from the basal membrane in the intestines (Figure 6A–C, Supplementary Figure S2).
Interestingly, the fish supplemented with strategy B showed fewer pathological changes,
such as mild syncytial hepatitis in the liver, abundant red blood cells in the spleen, and
a mild increase in intestinal goblet cell numbers (Figure 6G–I) compared to the infected
control group. In addition, the fish that were fed with strategy A had a slight increase
in goblet cells in the intestines, while the liver and spleen showed severe pathological
changes (Figure 6D,E) that were similar to those in the coinfected control group. At 14 dpi,
hepatic lesions persisted in the livers of the fish in both the control group and the strategy
A-supplemented group, whereas no hepatic lesions were observed in the additive B group
(Supplementary Figure S3). Lastly, all the groups, except the strategy B-supplemented
group, showed an increase in MMCs in the spleen, but no distinct pathological changes
were observed in the intestines of any of the groups at 14 dpi.
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Figure 6. Histopathological changes at 7 days post-infection in the liver, spleen, and intestines of red
hybrid tilapia coinfected with Tilapia lake virus and Aeromonas hydrophila: comparison between the
groups that received the control diet (A–C) or additive-supplemented feed (D–I) and the uninfected
control group (J–L). Syncytial hepatocytes (black arrows), the presence of intracytoplasmic inclusion
bodies in the liver (arrowheads, inset), the severe depletion of red blood cells, and the distinct
proliferation of melanomacrophage centres in the spleen (blue arrows) are denoted.

4. Discussion

Coinfections of bacteria and viruses, including those involving TiLV, are commonly
reported in tilapia [5,7]. Although it is challenging to determine whether viral or bacterial
infections occur first in natural aquaculture settings, previous observations have shown
that TiLV often leads to severe disease and is associated with remarkable pathological
changes [5,7]. Therefore, in this study, we introduced TiLV infection prior to the bacterial
challenge. Bacteria in the genera Aeromonas, Streptococcus, and Edwardsiella are often
isolated from fish infected with TiLV, and these pathogens lead to severe clinical outcomes
and high mortality rates [19,20]. This situation highlights the need for effective strategies
to mitigate the impacts on tilapia aquaculture. Currently, no specific antiviral treatment
is available for TiLV. To avoid the overuse of antibiotics and to tackle the challenge of
coinfections with TiLV and bacteria, alternatives, such as probiotics and feed additives that
modulate the immune system and enhance resistance to bacterial infections, offer promising
options. In this study, tilapias were fed diets supplemented with two feed additives and
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subsequently challenged with TiLV and A. hydrophila. Our findings demonstrated that
coinfection with TiLV and A. hydrophila resulted in high mortality, severe clinical signs, and
the increased expression of proinflammatory and immune-related genes. These results
are consistent with those of previous studies, which have shown that TiLV alone or in
combination with bacteria can cause significant mortality in various species of tilapia under
laboratory conditions [21,22] and in natural environmental settings [23].

Feed additives have become essential components in tilapia diets to promote growth
performance, boost immunity, balance gut pH and microbiota, and prevent tissue damage
from virulent pathogens [11,24,25]. Our study demonstrated the beneficial effects of feed
additives with immunomodulatory properties in red hybrid tilapia. Specifically, strategies
A and B, which contained blends of short- and medium-chain fatty acids, significantly
reduced the mortality of the tilapia coinfected with TiLV and A. hydrophila. Previous
studies have shown that these organic acid blends exhibit antimicrobial activity against A.
hydrophila and Francisella orientalis and can have positive effects that reduce mortality in
tilapia [24]. Furthermore, commercial phytogenic feed additives with immunomodulatory
properties have been reported to improve the survival of Atlantic salmon when challenged
with Piscirickettsia salmonis [26]. Indeed, some feed additives have been shown to reduce
the viral load [27,28] and decrease the bacterial burden in the tissues of infected fish [29].
Although the levels of TiLV and A. hydrophila detected in the tissues of the experimental
fish in this study did not differ significantly between the two groups that received the feed
additives, the fish supplemented with short- and medium-chain organic acids showed
better survival rates than those that were fed a regular diet. It therefore appears that these
organic acids may mitigate the pathological effects of infection through immunomodulation
of the host rather than direct antiviral or antimicrobial action.

The reduced mortality in the groups supplemented with strategies A and B in our
study could be attributable to the differences in the expression of the genes related to
inflammation and pathogen control. Notably, the group fed additive B had lower mortality,
fewer pathological changes, and a lower expression of the immune-related genes il-8, mx,
and rsad2. Il-8, which is a member of the CXC chemokine family, plays a crucial role in
recruiting immune cells to infection sites and modulating their function [30]. It serves
as a key player in innate immunity and inflammatory responses against pathogens [31].
Similarly, the mx and rsad2 genes are important regulators in the innate immune response
of fish against viral infections, as they inhibit early viral replication and disrupt viral
assembly and budding [32]. Our observation revealed an increased expression of il-8, mx,
and rsad2 transcripts in TiLV-infected fish, which is consistent with findings from previous
studies [17,33]. In the strategy B supplemented group, the decreased expression of il-8
at 3 dpi suggests a reduction in early inflammatory responses, which may limit tissue
damage. Notably, the lower expression of mx and rsad2 at 7 dpi, compared to the control
group, highlights the immunostimulatory effects of this additive. This finding suggests
that strategy B may promote initial antiviral defences, as seen in the early expression of mx,
thereby enabling the fish to manage the viral infection more effectively, reducing the need
for prolonged activation of these genes [33]. During TiLV infection, the intestinal epithelium
is a primary entry point for TiLV pathogenesis [34,35]. Since both TiLV and A. hydrophila
infection can disrupt the gut microbiota in the intestines of tilapia [36,37], we hypothesised
that acidifiers—the organic and amino acids in strategy B—alleviate pathological outcomes
during coinfection with these pathogens. These acids could reduce intestinal inflammation,
modulate gut microbiota, and boost gut immunity, supported by similar findings in tilapia
infected with F. orientalis and shrimp exposed to Vibrio parahaemolyticus [24,38,39]. Hence,
supplementation with additives following strategy B may promote the activities of the
immune system and improve the gut health of tilapia during coinfection, thus leading to
higher survival rates.

Notwithstanding, the coinfected tilapia supplemented with strategy A, which con-
sisted of lyso-phospholipids, showed lower mortality rates but displayed severe pathologi-
cal lesions in the liver and spleen. The fish treated with strategy A showed an increased
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expression of the proinflammatory cytokine il-8 and decreased expression of rsad2 at 7 dpi,
which suggested that additive A did not provide protective effects against inflammation
induced by the coinfection, with significant tissue damage as a potential outcome. How-
ever, we found fewer intestinal abnormalities in the fish fed with strategy A compared
to those that were fed a regular diet. Previously, lyso-phospholipids have been shown
to improve enterocyte mucous production and cellular responses against viral infection
and stress in Atlantic salmon [40]. Lyso-phospholipids can promote nutrient metabolism
in hepatocytes and enterocytes [41], which may contribute to the increased survival of
coinfected tilapia. We hypothesised that the efficacy of supplementation using strategy A
in improving fish survival is attributable to its role in intestinal protection, which includes
the better absorption and utilisation of nutrients in the intestines and liver. This may help
improve the health status of the tissue and reduce the impact of disease. Nevertheless,
future investigations into the intestinal molecular bioenergetics, blood chemistry, and
other panels of immune-related genes in the coinfected fish that receive these additives are
necessary to fully understand the mechanisms by which they protect against coinfections.
Additionally, factors such as water quality and other concurrent infections in farm settings
can significantly influence the immune system and responses to dietary supplementations.
Therefore, when selecting strategies to prevent diseases in tilapia, these factors should be
taken into account. Overall, although the supplementation of each feed additive showed
positive results under laboratory conditions, further field studies should be conducted to
strengthen the evidence of the beneficial effects of these additives against coinfection in
tilapia.

5. Conclusions

In our study, we demonstrated that dietary supplementation with specific feed ad-
ditives can mitigate the negative impacts of TiLV and A. hydrophila coinfection in tilapia.
Specifically, strategy B, which contained organic acids and natural immunostimulants, ef-
fectively reduced mortality and modulated the immune response of the fish, while strategy
A, which contained organic acids and lyso-phospholipids, had a significantly protective
effect on the fish intestines. Further investigations and field studies are necessary to fully
understand and optimise the use of these additives to combat TiLV and A. hydrophila
coinfection in tilapia farms.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology13110938/s1, Figure S1: Detection of Aeromonas hydrophila
in the anterior kidney of the coinfected fish at 7 days post-infection. (A) Representative agarose
gel showing the polymerase chain reaction product (130 bp) of the GyrB gene specific against A.
hydrophila. (B) Representative figures showing bacterial growth on Tryptic soy agar isolated from
the anterior kidneys of infected tilapia in the control and strategy A and B groups; Figure S2:
Histopathological changes at 5 days post-infection in the liver, spleen, and intestines of red hybrid
tilapia coinfected with Tilapia lake virus and Aeromonas hydrophila that received the control diet or
additive-supplemented feed. Syncytial hepatocytes (black arrows), the presence of intracytoplasmic
inclusion bodies in the liver (arrowheads, inset), the severe depletion of red blood cells, and the
distinct proliferation of melanomacrophage centres in the spleen (blue arrows) are denoted; Figure S3:
Histopathological changes at 14 days post-infection in the liver, spleen, and intestines of red hybrid
tilapia coinfected with Tilapia lake virus and Aeromonas hydrophila that received the control diet or
additive-supplemented feed. Supplementary Table S1. Nutrient compositions of control, strategy A
and B feed.
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